Верификация программ на моделях

Лекция №8

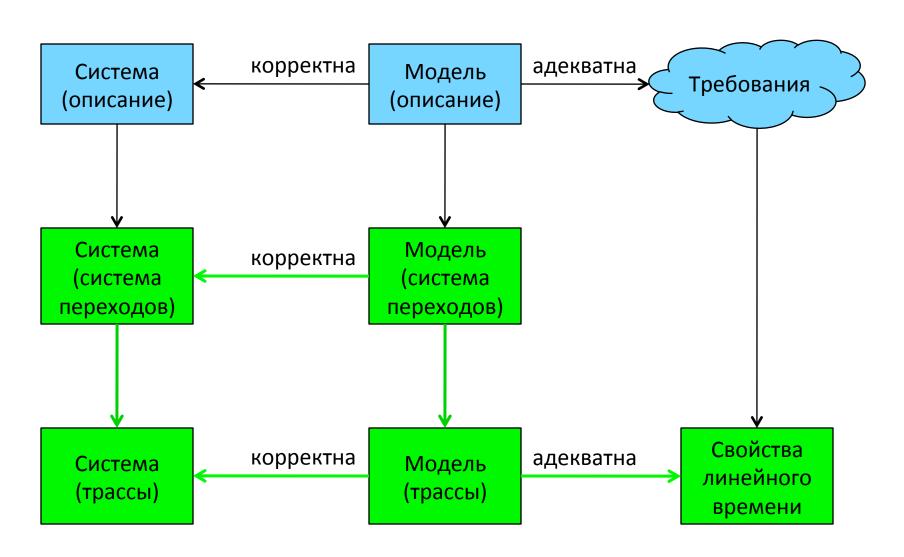
Графы программ. Системы с каналами взаимодействия. Синхронный и асинхронный параллелизм

Константин Савенков (лектор)

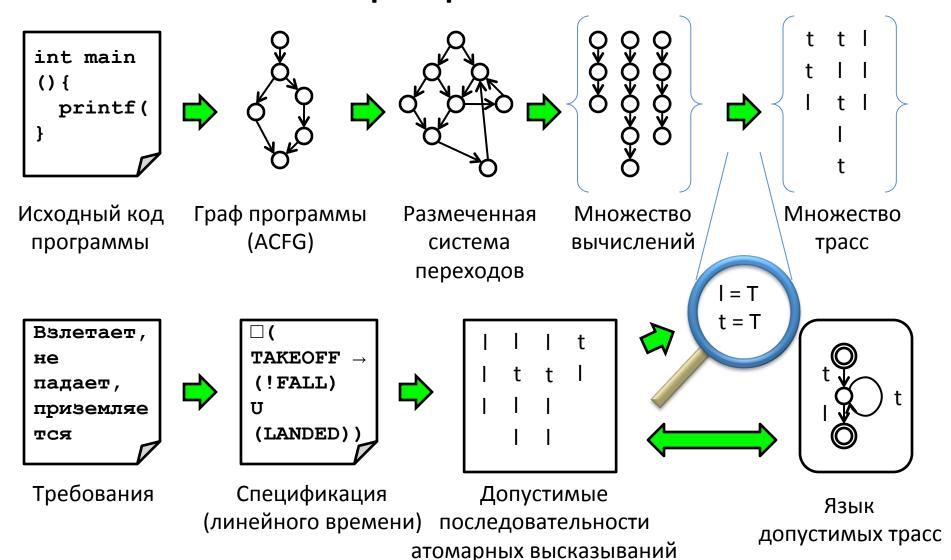
План лекции

- Графы программ
- Операционная семантика графов программ:
 - последовательные процессы,
 - чередование,
 - разделяемые переменные,
 - синхронная и асинхронная передача сообщений

Схема понятий



Различные представления программы



Размеченные системы переходов

(напоминание)

- описывают поведение системы;
- ориентированный граф: узлы состояния, дуги – переходы;
- **состояние** счётчик управления + значения переменных программы;
- **переход** (изменение состояния) выполнение оператора программы.

Размеченные системы переходов

(напоминание)

$$TS = \left\langle S, Act, \xrightarrow{a}, I, AP, L \right\rangle$$

- S множество состояний,
- Act множество действий, τ невидимое действие,
- \xrightarrow{a} = $S \times Act \times S$ тотальное отношение переходов,
- $I \subseteq S$ множество начальных состояний,
- $A\overline{P}$ множество атомарных высказываний,
- $L: S \to 2^{AP}$ функция разметки.

Формальное представление программы

- LTS всевозможные состояния программы и переходы между ними;
- Однако модель строится в виде программы на специальном языке;
- Рассуждения о корректности необходимо перенести на текст программы-модели;
- Для этого понятие описания программы необходимо формализовать;
- Формальное представление программы: граф программы и его семантика.

Формальное представление программы

- 1. граф, задающий структуру программы;
- 2. статическая семантика набор ограничений, которым должна удовлетворять структура;
- 3. операционная семантика понятие состояния программы и изменение состояния в ходе работы программы.

то, как по графу строится LTS

• $D_{\scriptscriptstyle D}$ – единый абстрактный домен данных

```
bool z;
mtype \{M1, M2\} m = M1;
proctype EQ(byte x, byte y)
  if
  :: (x == y) -> z = true
  :: else -> z = false
  fi
```

 $D_P \equiv \text{int}$ $bool \subset int$ by $te \subseteq int$ $mtype \subseteq int$

```
• V_P \subset Var – множество переменных
  (последовательной) программы \,P ,
• \forall v \in V_P, dom(v) = D_P^v \subseteq D_P
bool z;
mtype \{M1, M2\} m = M1;
proctype EQ(byte x, byte y)
                                   V_{EO} = \{z, m, x, y\}
  :: (x == y) -> z = true
     else \rightarrow z = false
  fi
```

• Функция означивания переменной:

$$\eta: V_P \to D_P, \forall v \in V_P, \eta(v) \in D_P^v$$

```
bool z;
mtype {M1,M2} m = M1;

proctype EQ(byte x, byte y)
{
   if
   :: (x == y) -> z = true
   :: else -> z = false
   fi
}
```

Примеры:

$$\eta(m) = M1 \in mtype$$

$$\eta(x) = 3 \in byte$$

$$\eta(z) = true \in bool$$

•
$$Cond(V_P)$$
 – набор булевых условий над V_P

формулы пропозициональной логики

– используются высказывания вида $x{\in}X$

$$p1 \equiv -3 < x \leq 5$$

$$p2 \equiv m = M2$$

$$p3 \equiv y < 2 * x$$

• Эффект операторов формализуется как отображение

$$Effect: Act \times Eval(Var) \rightarrow Eval(Var)$$

```
...
x = 17;
if
:: y = -2
:: y = 3
fi;
...
x = y + 5;
...
```

Пусть
$$\alpha = x = y + 5$$
, $\eta_{1,2}(x) = 17$, $\eta_1(y) = -2$, $\eta_2(y) = 3$

Тогда

Effect $(\alpha, \eta_1)(x) = \eta_1(y) + 5 = 3$

Effect $(\alpha, \eta_1)(y) = \eta_1(y) = -2$

Effect $(\alpha, \eta_2)(x) = \eta_2(y) + 5 = 8$

Effect $(\alpha, \eta_2)(y) = \eta_2(y) = 3$

Графы программ

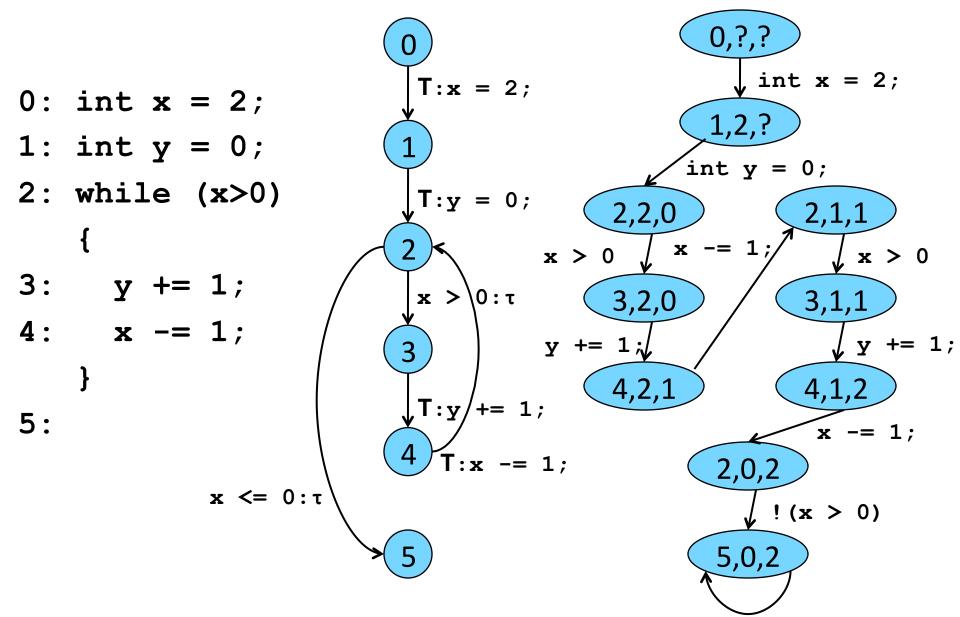
(статическая семантика)

$$PG = \langle Loc, Act, Effect, \rightarrow, Loc_0, g_0 \rangle$$

- Loc множество moчeк, исходные точки $Loc_0 \subseteq Loc$,
- Act множество действий,
- $Effect: Act \times Eval(Var) \rightarrow Eval(Var)$ функция эффекта,
- $\rightarrow \subseteq Loc \times (Cond(V_P) \times Act) \times Loc$ отношение перехода,
- g_0 \in $Cond(V_P)$ начальное условие,

Нотация:
$$l \xrightarrow{g:\alpha} l'$$
 обозначает $\langle l, g, \alpha, l' \rangle \in \rightarrow$

Пример графа программы



Пример графа программы

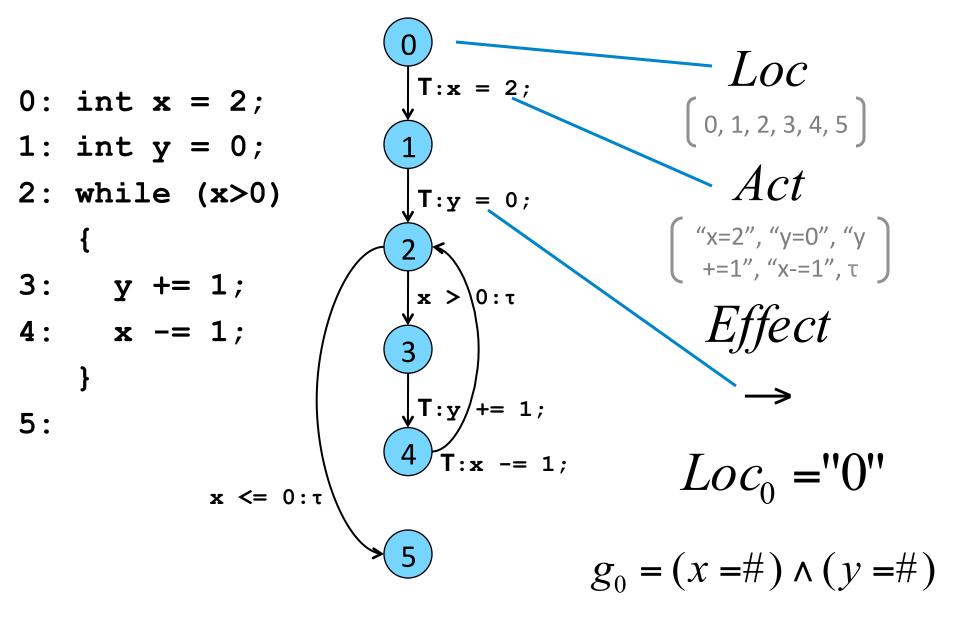
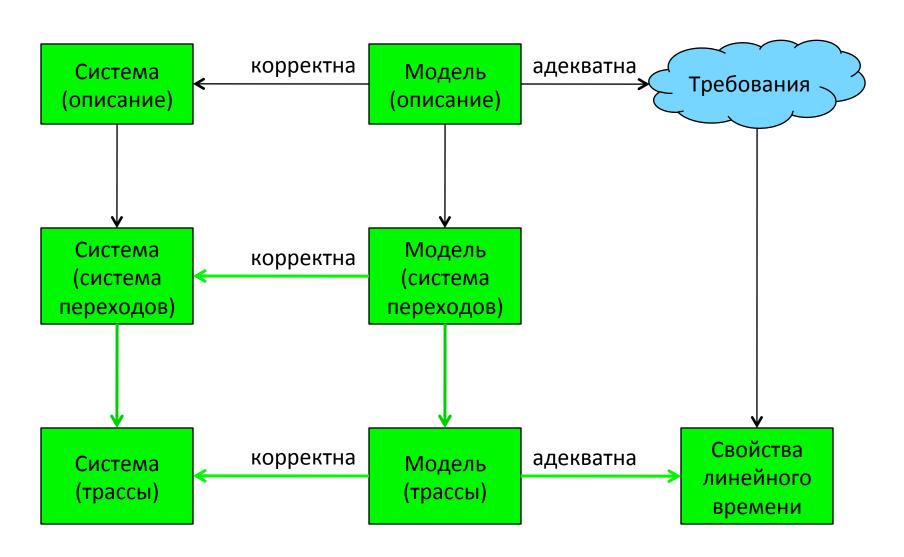


Схема понятий



Как из PG получить TS?

- Основная идея раскрутка
 - состояние: точка I + значение данных η
 - начальное состояние: начальная точка + все значения данных, удовлетворяющие g₀;
- Атомарные высказывания и разметка:
 - высказывания вида: "в *l*" и "х∈D", где D⊆dom(x);
 - состояние $< l, \eta >$ размечается высказыванием "в l" и всеми высказываниями, истинными в η ;
- Если $l \xrightarrow{g:\alpha} l'$ и g истинно в η , то

$$\langle l, \eta \rangle \xrightarrow{\alpha} \langle l', Effect(\alpha, \eta) \rangle$$

Структурированная операционная семантика

$$\frac{nосылка}{следствие}$$
 означает:

- если посылка истинная, то следствие также истинно;
- это т.н. правило вывода;
- если посылка тождественно равна истине, то следствие – *аксиома*.

• Система переходов TS(PG) графа программы

$$PG$$
 = $\langle Loc, Act, Effect,
ightharpoonup, Loc_0, g_0
angle$ над переменными V_P описывается сигнатурой

$$TS(PG) = \langle S, Act, \rightarrow, I, AP, L \rangle, \varepsilon \partial e$$

$$S = Loc \times Eval(V_P)$$

«состояние: точка / + значение данных η »

• Система переходов TS(PG) графа программы

$$PG = \langle Loc, Act, Effect,
ightharpoonup, Loc_0, g_0
angle$$
 над переменными V_P описывается сигнатурой

$$TS(PG) = \langle S, Act, \rightarrow, I, AP, L \rangle, z \partial e$$

$$I = \{\langle l, \eta \rangle | l \in Loc_0, \eta \models g_0 \}$$

«начальное состояние: начальная точка + все значения данных, удовлетворяющие g₀»

• Система переходов TS(PG) графа программы

$$PG = \langle Loc, Act, Effect,
ightharpoonup, Loc_0, g_0
angle$$
 над переменными V_P описывается сигнатурой

$$TS(PG) = \langle S, Act, \rightarrow, I, AP, L \rangle, \varepsilon \partial e$$

$$AP = Loc \cup Cond(V_P)$$

«высказывания вида: "в /" и "х∈D", где D⊆dom(x);»

• Система переходов TS(PG) графа программы

$$PG = \langle Loc, Act, Effect,
ightharpoonup, Loc_0, g_0
angle$$
 над переменными V_P описывается сигнатурой

$$TS(PG) = \langle S, Act, \rightarrow, I, AP, L \rangle, \varepsilon \partial e$$

$$L(\langle l, \eta \rangle) = \{l\} \cup \{g \in Cond(V_P) \mid \eta \models g\}$$

«состояние $< l, \eta >$ размечается высказыванием "в l" и всеми высказываниями, истинными в η »

• Система переходов TS(PG) графа программы

$$PG = \langle Loc, Act, Effect,
ightharpoonup, Loc_0, g_0
angle$$
 над переменными V_P описывается сигнатурой

$$TS(PG) = \langle S, Act,
ightharpoonup, I, AP, L \rangle$$
, где $\Rightarrow S \times Act \times S$ задано правилом $\frac{l \xrightarrow{g:\alpha} l' \land \eta \models g}{\langle l, \eta \rangle \xrightarrow{\alpha} \langle l', Effect(\alpha, \eta) \rangle}$ «Если $l \xrightarrow{g:\alpha} l'$ и g истинно в η , то $\langle l, \eta \rangle \xrightarrow{\alpha} \langle l', Effect(\alpha, \eta) \rangle$ »

• Система переходов TS(PG) графа программы

$$PG = \langle Loc, Act, Effect, \rightarrow, Loc_0, g_0 \rangle$$

над переменными $V_{\scriptscriptstyle P}$ описывается сигнатурой

$$TS(PG) = \langle S, Act, \rightarrow, I, AP, L \rangle, \varepsilon \partial e$$

•
$$S = Loc \times Eval(V_P)$$

•
$$\rightarrow \subseteq S \times Act \times S$$
 задано правилом
$$\frac{l \xrightarrow{g:\alpha} l' \land n \models g}{\langle l, \eta \rangle \xrightarrow{\alpha} \langle l', Effect(\alpha, \eta) \rangle}$$

•
$$I = \{\langle l, \eta \rangle | l \in Loc_0, n \models g_0 \}$$

•
$$AP = Loc \cup Cond(V_P)$$

•
$$L(\langle l, \eta \rangle) = \{l\} \cup \{g \in Cond(V_P) \mid n \models g\}$$

Параллелизм

Чередование (интерливинг)

(напоминание)

- Абстрагируемся от того, что система состоит из множества компонентов;
- Действия независимых компонентов чередуются:
 - доступен один процессор, выполнение одного действия блокирует другие;
- Порядок выполнения процессов неизвестен
 - Возможные порядки выполнения независимых процессов Р и Q:

P	Q	P	Q	P	Q	Q	Q	P	•	•	•
								Q			
								Q			

Чередование (интерливинг)

• Обоснование чередования:

эффект от параллельного выполнения независимых действий α и β равен эффекту от последовательного выполнения действий α и β в произвольном порядке;

• Символьная запись:

$$\textit{Effect}(\alpha || \beta, \eta) = \textit{Effect}((\alpha; \beta) + (\beta; \alpha), \eta)$$

- «Ⅲ» бинарный оператор чередования,
- «;» оператор последовательного выполнения,
- «+» оператор недетерминированного выбора.

Чередование (интерливинг)

$$x = x + 1 \qquad y = y - 2$$

$$\alpha \qquad \beta$$

$$x = 0 \qquad y = 7$$

$$\alpha \qquad ||| \qquad \beta \qquad x = 0, y = 7$$

$$\alpha \qquad ||| \qquad \beta \qquad x = 1, y = 7$$

$$x = 1, y = 5$$

$$\alpha \qquad x = 1, y = 5$$

Чередование систем переходов

- Пусть $TS_i = \langle S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i \rangle, i = 1,2$
 - две системы переходов
- Система переходов $TS_1 \parallel \mid TS_2$ определяется как

$$\langle S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L \rangle$$
, $r \partial e$

- $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$,
- отношение перехода определяется правилами:

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2 \rangle} \quad u \quad \frac{s_2 \xrightarrow{\alpha}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_2 \langle s_1, s_2' \rangle}$$

Чередование графов программ

• Для графов программ PG_1 (над V_1) и PG_2 (над V_2) без разделяемых переменных (т.е. $V_1 \cap V_2 = \emptyset$), формула

$$TS(PG_1) || TS(PG_2)$$

достоверно описывает параллельную композицию PG_1 и PG_2

а если разделяемые переменные есть?

Разделяемые переменные

(пытаемся сначала раскручивать, затем чередовать)

$$x = x * 2$$
 || $x = x + 1$ (в начале $x = 3$)
 α || β || α || β || α || α

Чередование графов программ

- Пусть $PG_i = \langle Loc_i, Act_i, Effect_i, \rightarrow_i, Loc_{0,i}, g_{0,i} \rangle, i = 1,2$
- Граф $PG_1 \parallel \mid PG_2$ над $V_1 \cup V_2$ определяется так

$$\langle Loc_1 \times Loc_2, Act_1 \cup Act_2, \rightarrow, Effect, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \land g_{0,2} \rangle$$

где отношение перехода -> определяется правилами

$$\frac{l_{1} \xrightarrow{g:\alpha} l_{1}'}{\langle l_{1}, l_{2} \rangle \xrightarrow{g:\alpha} \langle l_{1}', l_{2} \rangle} \quad u \quad \frac{l_{2} \xrightarrow{g:\alpha} l_{2}'}{\langle l_{1}, l_{2} \rangle \xrightarrow{g:\alpha} \langle l_{1}, l_{2}' \rangle}$$

$$u \, \textit{Effect}(\alpha, \eta) = \textit{Effect}_i(\alpha, \eta), ecnu \, \alpha \in \textit{Act}_i.$$

Пример

 $TS(PG_1) || TS(PG_2) \neq TS(PG_1 || PG_2)$

Параллелизм и рандеву

- Распределённые программы выполняются параллельно;
- Для моделирования взаимодействия необходимо придумать подходящий механизм;
- В распределённой программе разделяемых переменных нет;

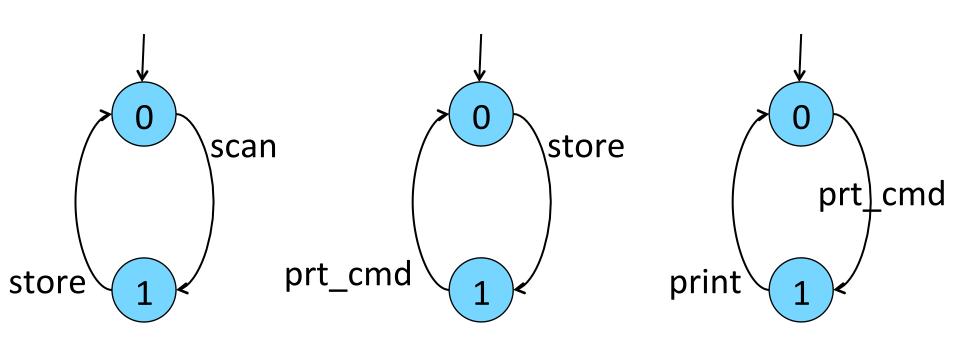
ф Передача сообщений:

- синхронная передача сообщений (рандеву),
- асинхронная передача сообщений (каналы).

Рандеву

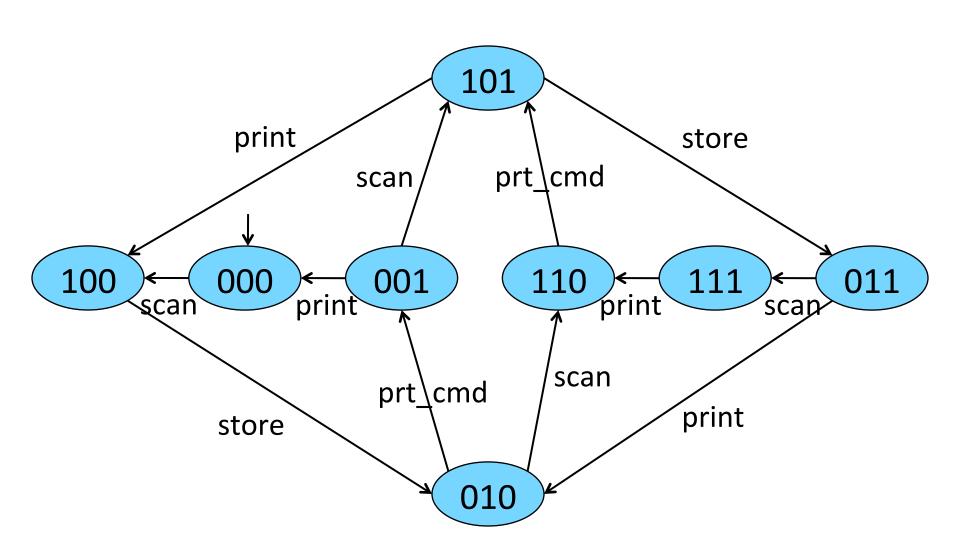
- Распределённые процессы, взаимодействующие при помощи синхронного обмена сообщениями
 - процессы вместе выполняют синхронизированные действия,
 - взаимодействие обоих процессов происходит одновременно,
 - происходит "рукопожатие";
- Абстрагируемся от передаваемой информации;
- Н набор синхронизированных действий:
 - действия, не принадлежащие H, независимы и чередуются,
 - действия из *H* должны быть синхронизированы.

Пример рандеву



$$A \parallel_H B \parallel_H$$
Printer

Параллельная композиция



Рандеву систем переходов

- Пусть $TS_i = \langle S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i \rangle, i = 1,2 \ u \ H \subseteq Act_1 \cap Act_2$
- Тогда $\mathit{TS}_{\scriptscriptstyle 1} \parallel_{\scriptscriptstyle H} \mathit{TS}_{\scriptscriptstyle 2}$ определяется как

$$\langle S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L \rangle$$
, $r \partial e$

- $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$,
- отношение перехода определяется правилами:

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2 \rangle} \quad u \quad \frac{s_2 \xrightarrow{\alpha}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_2 \langle s_1, s_2' \rangle} \, \partial \pi \, \alpha \notin H$$

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1' \wedge s_2 \xrightarrow{\alpha}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2' \rangle} \, \partial \pi \, \alpha \in H \qquad \text{интерливинг}$$

$$\frac{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2' \rangle}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2' \rangle} \, \partial \pi \, \alpha \in H \qquad \text{интерливинг}$$

$$\frac{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2' \rangle}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1', s_2' \rangle} \, \partial \pi \, \alpha \in H \qquad \qquad \text{рандеву}$$

Заметим, что $TS_1 \parallel_H TS_2 = TS_2 \parallel_H TS_1$, но $(TS_1 \parallel_{H_1} TS_2) \parallel_{H_2} TS_3 \neq TS_1 \parallel_{H_1} (TS_2 \parallel_{H_2} TS_3)$

Попарное рандеву

- Пусть $TS_1 \parallel ... \parallel TS_n$ для $H_{i,j} \subseteq Act_i \cap Act_j$ с $H_{i,j} \cap Act_k = \varnothing$ для $k \neq i,j$
- Пространство состояний $TS_1 \parallel ... \parallel TS_n$ это декартово произведение множеств состояний TS_i
- $\partial \pi \alpha \in Act_i \setminus (\bigcup_{0 < j \le n \land i \ne j} H_{i,j}) u 0 < i \le n$ $\frac{S_i \xrightarrow{\alpha}_i S_i'}{\langle S_1, ..., S_i, ..., S_n \rangle \xrightarrow{\alpha}_i \langle S_1, ..., S_i', ..., S_n \rangle}$
- для $\alpha \in H_{i,j}$ и $0 < i < j \le n$

$$\frac{S_{i} \xrightarrow{\alpha}_{i} S_{i} \land S_{j} \xrightarrow{\alpha}_{j} S_{j}}{\langle S_{1}, ..., S_{i}, ..., S_{j}, ..., S_{n} \rangle \xrightarrow{\alpha}_{\beta} \langle S_{1}, ..., S_{i}, ..., S_{j}, ..., S_{n} \rangle}$$

Синхронный параллелизм

Пусть
$$TS_i = \langle S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i \rangle, i = 1,2 u$$

$$\exists Act \times Act \rightarrow Act, (\alpha, \beta) \rightarrow \alpha * \beta$$

$$TS_1 * TS_2 = \langle S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L \rangle$$

где
$$L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$$
 и \longrightarrow определяется так:

$$\frac{S_{1} \xrightarrow{\alpha}_{1} S_{1}' \wedge S_{2} \xrightarrow{\beta}_{2} S_{2}'}{\langle S_{1}, S_{2} \rangle} \xrightarrow{\alpha*\beta} \langle S_{1}', S_{2}' \rangle$$
 chan ch[0]={int} ch!M1 - \alpha ch?m - \beta

Асинхронный параллелизм

- Процессы взаимодействуют при помощи каналов (*c* ∈ *Chan*),
- Каналы типизированы по передаваемым сообщениям (dom(c)),
- Каналы FIFO буфера, хранящие сообщения (соотв. типа),
- Емкость канала *cap(c) максимальное число* сообщений, которое может буферизовать канал,
- cap(c) = 0 взаимодействие сводится к рандеву.

Каналы

• Процесс *P_i* = граф программы *PG_i* + действия обмена сообщениями *Comm*:

c!v — передача значения v по каналу с c?x — приём сообщения по каналу с и присвоение его переменной x

$$Comm = \{c!v, c?x \mid c \in Chan, v \in dom(c), x \in V_P, dom(x) \subseteq dom(c)\}$$

- Отправка и приём сообщений:
 - с!v помещает значение v в конец буфера с (если с не полон),
 - с?х забирает первый элемент буфера и присваивает его значение х (если с не пуст),
 - cap(c) = 0 у канала c нет буфера, отправка и приём производятся одновременно (pahdesy),
 - cap(c) > 0 отправка и приём никогда не происходят одновременно (асинхронная передача сообщений).

Системы с каналами

• Граф программы PG над (Var, Chan) задаётся сигнатурой

$$PG = \langle Loc, Act, Effect, \rightarrow, Loc_0, g_0 \rangle$$

где

$$\rightarrow \subseteq Loc \times (Cond(V_P) \times Act) \times Loc \cup Loc \times Comm \times Loc$$

• Система с каналами *CS* над $(\bigcup_{0 < i \le n} Var_i, Chan)$ задаётся как

$$CS = [PG_1 \mid ... \mid PG_n]$$

где PG_i – графы программ над (Var_i , Chan)

Взаимодействие

• Рандеву

- если cap(c)=0, то процесс P_i может выполнить $l_i \xrightarrow{c!v} l_i$ '
- ... только если P_j может выполнить $l_j \xrightarrow{c?x} l_j$ '
- эффект соответствует распределённому x = v

• Асинхронная передача сообщений

- если cap(c) > 0, то процесс P_i может выполнить $l_i \xrightarrow{c!v} l_i$ '
- \dots только если в c хранится меньше cap(c) сообщений,
- $-P_{j}$ может выполнить $l_{j} \xrightarrow{c?x} l_{j}$ ', только если c не пуст
- \dots после чего первый элемент v извлекается из c и присваивается x (атомарно)

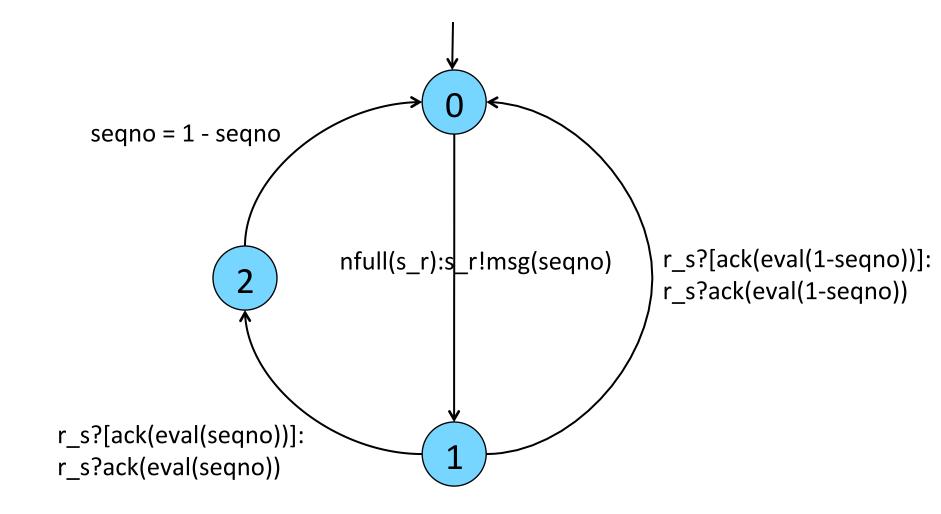
	Выполнимо, если	Эффект
c!v	с не полон	Enqueue(c,v)
c?x	с не пуст	<pre><x=front(c);dequeue(c);></x=front(c);dequeue(c);></pre>

Модель на Promela

```
mtype = {msg, ack};
                                        msg(0)
chan s r = [2] of {mtype, bit};
                                                                  ack (0)
chan r's = [2] of {mtype, bit};
                                        msg(1)
active proctype sender()
                                                                  ack (1)
{ bit seqno;
  do
  :: s r!msg,seqno ->
      if
      :: r s?ack,eval(segno) ->
                                           Считываем новое сообщение
          segno = 1 - segno;
      :: r s?ack,eval(1-seqno)
      fi
 od
active proctype receiver()
{ bit expect, seqno;
  do
                                              Сохраняем сообщение
  :: s r?msg,seqno ->
      r_s!ack, seqno;
      :: seqno == expect;
         expect = 1 - expect
      ::else ———
      fi
  od
                                              Игнорируем сообщение
```

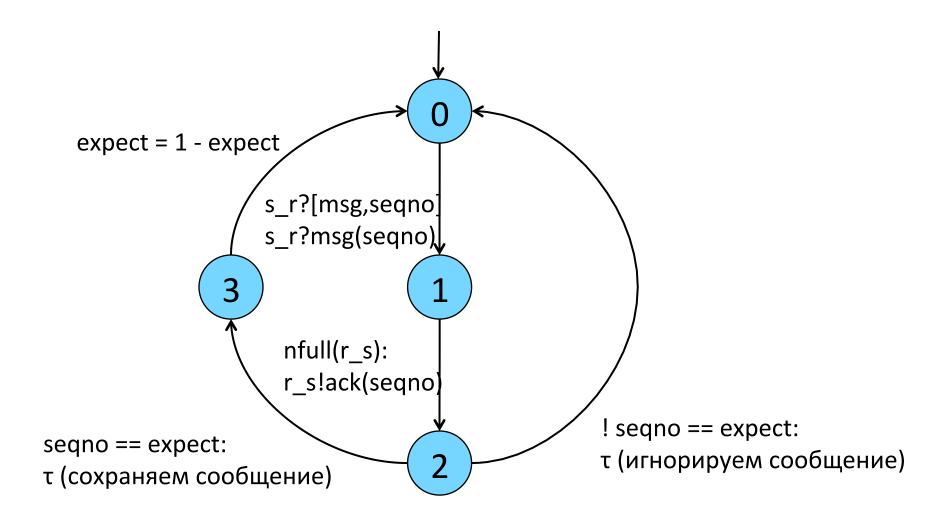
Alternating Bit Protocol

(отправитель)



Alternating Bit Protocol

(получатель)



Значение канала

- Оценка ξ значения канала c это
 - отображение канала на последовательность значений:

$$\xi: Chan \rightarrow dom(c)^*$$

 такое, что длина последовательности не превосходит ёмкости канала:

$$len(\xi(c)) \le cap(c)$$

- при этом $\xi(c) = v_1 v_2 ... v_k$ означает, что v_1 верхнее сообщение в буфере
- Исходная оценка $\xi_0(c) = \varepsilon$ $\forall c \in Chan$

Операционная семантика системы с каналами

• Пусть $CS = [PG_1 \mid ... \mid PG_n]$ – система с каналами над (*Chan, Var*), и $PG_i = \langle Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i} \rangle, i = \overline{1,n}$

• Система переходов TS(CS) описывается сигнатурой

$$TS(CS) = \langle S, Act, \rightarrow, I, AP, L \rangle, \varepsilon \partial e$$

- $S = (Loc_1 \times ... \times Loc_n) \times Eval(Var) \times Eval(Chan)$
- $Act = (\bigcup_{0 \le i \le n} Act_i) \cup \tau$
- → определяется правилами вывода на сл. слайдах
- $I = \{\langle l_1, ..., l_n, \eta, \xi \rangle \mid \forall i (l_i \in Loc_{0,i} \land \eta \models g_0) \land \forall c(\xi_0(c) = \varepsilon) \}$
- $AP = (\bigcup Loc_i) \cup Cond(Var)$
- $L(\langle l_1,...,l_n,\eta,\xi\rangle) = \{l_1,...,l_n\} \cup \{g \in Cond(Var) \mid \eta \models g\}$

Правила вывода (I)

• Интерливинг для $\alpha \in Act_i$

$$\frac{l_{i} \xrightarrow{g:\alpha} l_{i}' \land \eta \models g}{\langle l_{1}, \dots, l_{i}, \dots, l_{n}, \eta, \xi \rangle \xrightarrow{\alpha} \langle l_{1}, \dots, l_{i}', \dots, l_{n}, \eta', \xi \rangle}$$

• Синхронная передача сообщений через $c \in Chan, cap(c) = 0$

$$\begin{aligned} & l_i \xrightarrow{c?x} l_i' \wedge l_j \xrightarrow{c!v} l_j' \wedge i \neq j \\ \hline \langle l_1, \dots, l_i, \dots, l_j, \dots, l_n, \eta, \xi \rangle \xrightarrow{\tau} \langle l_1, \dots, l_i', \dots, l_j', \dots, l_n, \eta', \xi \rangle \\ \text{где } \eta = \eta \lceil x = v \rceil. \end{aligned}$$

Правила вывода (II)

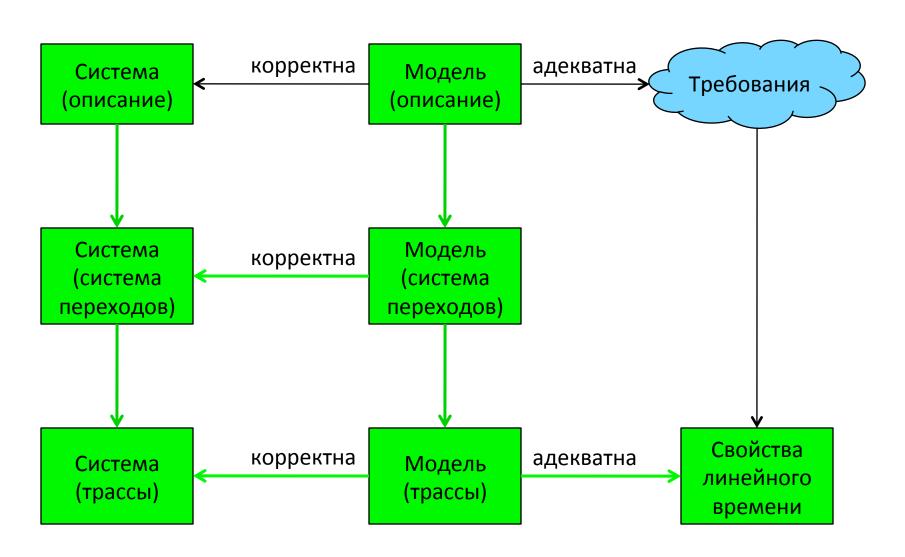
- Асинхронная передача сообщений через $c \in Chan, cap(c) \neq 0$
 - получить значение по каналу c и присвоить переменной x:

$$\frac{l_{i} \xrightarrow{c?x} l_{i}' \wedge len(\xi(c) = k > 0) \wedge \xi(c) = v_{1}...v_{k}}{\langle l_{1},...,l_{i},...,l_{n},\eta,\xi \rangle \xrightarrow{c?x} \langle l_{1},...,l_{i}',...,l_{n},\eta',\xi' \rangle}$$
 где $\eta = \eta[x = v_{1}]u \xi' = \xi[c = v_{2}...v_{k}]$.

– передать значение $v \in dom(c)$ по каналу с:

$$\frac{l_i \xrightarrow{c!v} l_i' \land len(\xi(c) = k < cap(c)) \land \xi(c) = v_1...v_k}{\langle l_1, ..., l_i, ..., l_n, \eta, \xi \rangle \xrightarrow{c!v} \langle l_1, ..., l_i', ..., l_n, \eta, \xi' \rangle}$$
 где $\xi' = \xi[c = v_1...v_kv]$.

Схема понятий



Спасибо за внимание! Вопросы?

